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Abstract
Diffusion-weighted and dynamic contrast-enhanced magnetic resonance imaging (MRI) data of 28 patients were
obtained pretreatment, after one cycle, and after completion of all cycles of neoadjuvant chemotherapy (NAC). For
each patient at each time point, the tumor cell number was estimated using the apparent diffusion coefficient and the
extravascular extracellular (ve) and plasma volume (vp) fractions. The proliferation/death rate was obtained using the
number of tumor cells from the first two time points in conjunction with the logistic model of tumor growth, which
was then used to predict tumor cellularity at the conclusion of NAC. The Pearson correlation coefficient between
the predicted and the experimental number of tumor cells measured at the end of NAC was 0.81 (P = .0043). The
proliferation rate estimated after the first cycle of therapy was able to separate patients who went on to achieve
pathologic complete response from those who did not (P = .021) with a sensitivity and specificity of 82.4% and
72.7%, respectively. These data provide preliminary results indicating that incorporating readily available quantitative
MRI data into a simple model of tumor growth can lead to potentially clinically relevant information for predicting an
individual patient’s response to NAC.
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Introduction
Neoadjuvant chemotherapy (NAC) is increasingly used in women with
locally advanced breast cancer because it can allow downstaging of can-
cers to render them operable and/or to facilitate breast conservation
surgeries [1,2]. Furthermore, early assessment of clinical response to
NAC may provide clinicians with the ability to identify patients that
are not responding to their current therapy, thereby allowing the ability
to explore alternative therapies that could prove to be more effective.
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Mathematical models of tumor growth and treatment response
have the potential to predict the status of a tumor at a later time point
[3–5], but most models require invasive parameters that are extra-
ordinarily difficult to measure for individual patients. This has led to
the limited application of mathematical models in clinical care and clini-
cal trials. One way to potentially overcome this limitation is through the
use of noninvasive quantitative imaging data to initialize and constrain
mathematical models. Since imaging data are specific to each patient
and can be obtained at multiple times during the course of therapy, pre-
dictions from models incorporating imaging data will be patient specific
and can also be readily compared to data obtained at a later time point.
In this way, mathematical models initialized by imaging data generate
patient-specific hypotheses that can be experimentally tested. Here, we
focus on using measurements made with diffusion-weighted magnetic
resonance imaging (DW-MRI) and dynamic contrast-enhanced mag-
netic resonance imaging (DCE-MRI) to provide estimates of tumor
cellularity to initialize the logistic model of tumor growth.
DW-MRI provides a noninvasive measurement of the degree of

random motion of water in tissue. The rate of this diffusion is quan-
tified by the apparent diffusion coefficient (ADC) and largely depends
on the presence of barriers to water diffusion within the tissue micro-
environment. In well-controlled settings, it has been shown that the
ADC inversely correlates with tissue cellularity [6–11]. ADC changes
have also been reported after chemotherapy; in particular, several
clinical studies in patients with breast cancer have shown an increase
in the mean ADC values after NAC [12–15].
DCE-MRI involves the injection of a paramagnetic contrast agent

(CA) that can lead to variation of the MR signal intensity with time.
By using appropriate pharmacokinetic models, microvascular physio-
logical parameters related to blood flow, vessel permeability, and tis-
sue volume fractions can be extracted from the signal intensity time
curves [16]. DCE-MRI changes have also been reported after chemo-
therapy; in particular, several clinical studies in patients with breast
cancer undergoing NAC have shown changes in DCE-MRI after
treatment [17–20].
Historically, mathematical models of tumor growth do not include

noninvasive parameters obtained from imaging. More recently, how-
ever, there have been a number of exciting efforts on this front. For
example, Ellingson et al. [21] used ADC data and Szeto et al. [22]
used serial gadolinium-enhanced T1- and T2-weighted MR images of
patients with glioblastoma combined with a reaction-diffusion equation
to estimate the proliferation and tumor cell diffusion rates. Konukoglu
et al. [23] used diffusion tensor imaging data and T1- or T2-weighted
MR images in conjunction with the reaction-diffusion equation to
estimated the rate of diffusion of tumor cells. These studies, however,
do not make explicit use of the biophysical relationships between cel-
lular variations and the ADC values and also the volume fractions that
can be obtained from DCE-MRI measurements.
In a previous study of treatment in the 9L rat model of brain cancer,

we used serial DW-MRI data obtained before and 1 day after treat-
ment with bis-chloroethylnitrosourea (BCNU; Carmustine) to esti-
mate tumor proliferation rates and cellularity [24]. The prediction
of the number of tumor cells 3 days after treatment compared favor-
ably to those measured from experimental imaging data. We were also
able to observe a statistically significant difference in the proliferation
rates in the treated and control rats after 1 day of treatment. We also
reported preliminary results in breast cancer patients undergoing
NAC, in which the DW-MRIs for the patients were obtained before,
after one cycle, and after completion of NAC [25]. We predicted the
number of tumor cells at the conclusion of chemotherapy and com-
pared this to experimental imaging data. The prediction of the number
of tumor cells at the end of therapy compared favorably to those mea-
sured from experimental imaging data.

In this contribution, we show preliminary results indicating how
serial DW- and DCE-MRI data can be used to estimate tumor cellu-
larity and how changes in cellularity observed after one cycle of NAC
can allow for an estimate of the tumor proliferation rate. The prolifer-
ation rate is then used to predict the tumor cellularity at the conclusion
of therapy and is compared to the observed MRI data. Lastly, the pro-
liferation rate is used to separate patients who will achieve pathologic
complete response (pCR) from those who will not.

Materials and Methods

Patient Population
DW- and DCE-MRI were acquired from 28 patients with stage II/III

breast cancer. The patients provided informed consent, and the study
was approved by our Institutional Review Board. Patient age, treatment
regimen, receptor status, tumor size, and grade are summarized in
Table 1. The patients received 8 to 16 cycles of NAC, which was ad-
ministered weekly, biweekly, or every 3 weeks depending on the par-
ticular regimen. DW- and DCE-MRI of the patients were obtained
before any treatment (t1), after one cycle (t2), and at the completion (t3)
of NAC. Only 22 DW- and DCE-MRI data sets were available at t3. At
the conclusion of NAC, the patients underwent surgery and pathologic
response was determined. The patients were separated into two groups
based on the surgical pathologic data: those with no residual invasive can-
cer in the breast or lymph nodes were classified as achieving pCR (n = 11)
and those with any residual disease in either the breast or lymph nodes
were classified as nonresponders (NR; n = 17). Of the 17 NR patients,
eight were not included in the correlation with experimental imaging
data at t3 due to the following reasons: no DW-MRI coverage of tumor
(n = 2), patients did not return for imaging (n = 3), problem with the
contrast line (n = 1), no enhancing voxels found in DCE-MRI data
(n = 1), and no residual breast tumor (disease in lymph nodes; n = 1).

Imaging Protocol
DW- and DCE-MRI were performed using a Philips 3T Achieva

MR scanner (Philips Healthcare, Best, The Netherlands) equipped
with either a 4- or 16-channel receive double-breast coil (Invivo Inc,
Gainesville, FL).

DW-MRIs were acquired with a single-shot spin echo echo planar
imaging sequence in three orthogonal diffusion encoding directions (x,
y, and z), with two b values [0 and 500 s/mm2 for 12 patients (pCR =
6; NR = 6), 0 and 600 s/mm2 for 14 patients (pCR = 5; NR = 9), and
50 and 600 s/mm2 for 2 patients (NR = 2)], repetition time/echo time
(TR/TE) = 3080 ms/43 ms, Δ = 20.7 milliseconds, δ = 11.6 milli-
seconds, and number of signal acquisitions = 10 for a total scan time
of 4 minutes and 40 seconds [signal-to-noise ratio (SNR) in diffusion
weighted imaging (DWI) is typically low, relative to standard anatomic
sequences, and thus, we acquired multiple measurements to increase
the SNR]. The acquisition employed a sensitivity encoding (SENSE)
factor of 2 with a 96 × 96 × 12 matrix over a field of view (FOV) of
(19.2 cm)2 reconstructed to 144 × 144 with a slice thickness of 5 mm
with a resulting voxel size of 1.333 × 1.333 × 5 mm3. A spectrally
selective adiabatic inversion recovery fat saturation was implemented
to reduce image artifacts. DCE-MRI data were acquired with a
three-dimensional radio frequency (RF)-spoiled gradient echo sequence
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with TR/TE/α = 7.9 ms/1.3 ms/20°. The acquisition matrix employed
a SENSE factor of 2 with a 192 × 192 × 20 matrix over an FOV of
(25.6 cm)2, a slice thickness of 5 mm resulting in a voxel size of 1.333 ×
1.333 × 5 mm3. Data for the T1 map were acquired with 10 flip angles
from 2° to 20° in 2° increments. The same protocol (with the flip
angle fixed at 20°) was used for the dynamic study in which each
20-slice set was collected in 16 seconds at 25 time points. A catheter
placed within an antecubital vein delivered 0.1 mmol/kg gadolinium-
diethylenetriamine pentaacetic acid (Magnevist; Berlex, Wayne, NJ) at
a rate of 2 ml/s (followed by a saline flush) through a power injector
after the acquisition of the first three dynamic scans.

The diffusion, T1, and dynamic image volumes were all acquired
with the same center location and with minimal patient motion,
thereby making them inherently co-registered.

DW-MRI Analysis
ADC maps were calculated from the DW-MRI data using the

following equation:

ADC =
∑i¼x;y;z lnðS0=SiÞ=bi

3
; ð1Þ

where i is the diffusion-weighting direction, bi is the amount of
diffusion-weighting imparted to the sample, S i and S0 are the mea-
sured signal in each voxel [26]. Voxels with negative ADC values
were not used for the analysis.

DCE-MRI Analysis
DCE-MRI data were analyzed by the fast exchange limit formalism

[27,28] in which the longitudinal relaxation rate constant, R1, is
assumed to be linearly proportional to the concentration of CA in
the tissue, C t(t). To compute C t(t), we used the extended Tofts-Kety
(ETK) relationship which includes the blood plasma fraction, vp [29],
shown in the following equation:

CtðT Þ = K trans
ZT

0

CpðtÞexp − K trans=veð ÞðT − tÞð Þdt + vpCpðtÞ; ð2Þ

where K trans is the volume transfer constant, ve is the extravascular
extracellular volume fraction, and Cp(t) is the concentration of CA in
blood plasma [i.e., the arterial input function (AIF)]. We used a popu-
lation average AIF that resulted from the averaging of 50 different indi-
vidual AIFs obtained from scans of patients with breast cancer [30].
Tumor ROI Selection
Region of interests (ROIs) were manually drawn on multiple slices

to cover the entire visible tumor as seen at each imaging time point.
The voxels within the outlined ROI that showed a postcontrast sig-
nal (Spost) intensity ≥80% of the precontrast signal intensity (Spre)
were considered the tumor voxels. This was calculated as follows:

Enh = 100 � Spost − Spre
Spost

� �
: ð3Þ

Eighty percent was selected as it is the enhancement threshold that
resulted in the greatest agreement between tumor size as measured by
MRI at t3 and the size of the pathology tumor specimen [Pearson
and concordance correlation coefficient were 0.84 (P < 10−6) and
0.74, respectively; data not shown]. Thus, it is reasonable criteria
to select voxels for further analyses.
Table 1. Summary of the Patient Data.
Patient
 Age (years)
 Treatment Regimens
 Receptor Status (ER, PR, HER2)
 Size Pretreatment (cm)
 Tumor Grade
 Residual Tumor Size (cm)
 Clinical Response
1
 50
 AC→taxol
 +, +, −
 10
 3
 0.52
 NR

2
 52
 Taxotere
 +, −, +
 5
 3
 1.5
 NR

3
 60
 AC→taxol + concurrent trastuzumab
 +, +, +
 5
 2
 2.9
 NR

4
 36
 Taxol + cisplatin ± everolimus
 −, −, −
 7
 2
 2.9
 NR

5
 48
 Dose-dense AC→taxol
 +, +, −
 3
 1
 1.3
 NR

6
 43
 Dose-dense AC→taxol
 +, +, −
 6
 2
 2.6
 NR

7
 59
 Dose-dense AC→taxol
 +, +, −
 7
 2
 4.2
 NR

8
 53
 Taxol + cisplatin ± everolimus
 −, −, −
 3.5
 2
 1.3
 NR

9
 35
 Trastuzumab + carboplatin + ixabepilone
 +, +, +
 4
 3
 1.4
 NR

10
 28
 Taxol + cisplatin ± everolimus
 −, −, −
 2
 3
 0.8
 NR

11
 33
 AC→taxol
 +, +, −
 5
 3
 1.2
 NR

12
 39
 AC→taxol
 +, +, −
 10
 1
 2.5
 NR

13
 57
 AC→taxol
 −, +, +
 5.5
 3
 n/a
 NR

14
 67
 Dose-dense AC→taxol
 −, +, +
 8
 3
 1.2
 NR

15
 45
 Taxol + cisplatin ± everolimus
 −, −, −
 3
 3
 0.5
 NR

16
 46
 Taxotere + carboplatin + herceptin
 +, +, +
 7
 3
 0.3
 NR

17
 47
 Taxotere→AC
 +, +, −
 6
 1
 0
 NR*

18
 53
 AC→concurrent taxol + trastuzumab
 −, −, +
 4
 3
 0
 pCR

19
 46
 Taxotere→AC
 −, +, −
 5
 3
 0
 pCR

20
 46
 AC→concurrent taxol + trastuzumab
 −, −, +
 12
 2
 0
 pCR

21
 33
 AC→weekly taxol
 −, −, −
 10
 3
 0
 pCR

22
 39
 Trastuzumab and lapatinib
 −, −, +
 3.5
 2
 0
 pCR

23
 46
 AC→taxol
 +, −, −
 2
 3
 0
 pCR

24
 42
 Taxol + cisplatin ± everolimus
 −, −, −
 3
 3
 0
 pCR

25
 34
 Taxotere→AC
 −, −, −
 3
 3
 0
 pCR

26
 44
 Trastuzumab + lapatinib
 −, −, +
 6
 3
 0
 pCR

27
 37
 Taxol + cisplatin ± everolimus
 −, −, −
 4.5
 3
 0
 pCR

28
 39
 AC→taxol
 −, −, −
 2.5
 3
 0
 pCR
ER indicates estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2.
*Tumor found in lymph nodes.



Translational Oncology Vol. 6, No. 3, 2013 Modeling Breast Tumor Growth with MRI Data Atuegwu et al. 259
Every voxel in the tumor ROI was fit by the ETK model to return
estimates of ve and vp. (It is important to note that, in the analyses
below, we do not explicitly use the K trans results.) Voxels that did
not converge, converged to unphysical values (ve or vp less than 0
or greater than 1), or where the sum of ve and vp was greater than
1 were not used for subsequent analysis. Since the DW- and DCE-
MRI data were inherently co-registered, the tumor ROIs were drawn
very conservatively to encompass all enhancing voxels on the DCE-
MRI data and was then transferred to the DW-MRI data. We also
visually inspected the registration between the DW- and DCE-MRI
data to ensure that they were registered to each other as we expected.
The median ADC, ve, and vp in the tumor ROI were then calculated
for all the patients at all time points and used for the modeling.
Estimation of the Tumor Cells
As several studies have shown a strong negative correlation between

ADC and cellularity [6–10], we used Equation 4 to convert ADC
values to tumor cell number.

N tð Þ = θ
ADCw � ADCðtÞ
ADCw � ADCmin

� �
vTC tð Þ: ð4Þ
Figure 1. Parametric maps overlain on sagittal, T1-weighted anatom
column). The first row shows the ve obtained before therapy (t1), af
Similarly, the second row shows the vp, the third row shows the A
tumor cells (calculated using the bottom relation in Equation 5) in e
column represent the median values of each parameter.
To calculate the number of tumor cells N (t), we assumed that the
voxel with the minimum ADC (ADCmin) will contain the maximum
number of cells that can fit into that voxel (i.e., the carrying capacity, θ)
[24,25]. Voxels with the ADC of free water (ADCw = 3 × 10−3 mm2/s
[31]) are taken to have zero tumor cells [24,25].

To calculate θ, we assumed spherical tumor cells with a sphere
packing density of 0.7405 [32]. We assumed a nominal tumor cell
radius of 10 μm to arrive at a tumor cell volume of 4189 μm2; from
this value, and the voxel volume, the tumor cell number can be
determined for a given voxel. We then computed the volume of voxel
that can be occupied by tumor cells vTC in two ways: 1) assume the
entire voxel was made of tumor cells and 2) incorporate both ve and vp
from the ETK model into the calculation. The following equation
summarizes this approach:

vTCðtÞ = 1 assume ve = vp = 0
1 − veðtÞ − vpðtÞ veðtÞ and vpðtÞ f rom the ETK model

�

ð5Þ

We converted the median ADC in the tumor ROI using Equations 4
and 5 to estimate the median number of tumor cells, N estimated(t)
(from the first relation in Equation 5), and N estimated_ETK(t) (from
ic scans for a pCR patient at each time point (one time point per
ter one cycle of therapy (t2), and at the conclusion of therapy (t3).
DC maps (×10−3 mm2/s), and the last row shows the number of
ach voxel (×105) at these same time points. The numbers in each



Figure 2. Data for an NR patient that is analogous to the Figure 1 data for a pCR patient. The first row shows the ve obtained before
therapy (t1), after one cycle of therapy (t2), and at the conclusion of therapy (t3). Similarly, the second row shows the vp, the third row
shows the ADC maps (×10−3 mm2/s), and the last row shows the number of tumor cells (calculated using the bottom relation in Equa-
tion 5) in each voxel (×105) at these same time points. The numbers in each column represent the median values of each parameter.
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the second) for all three time points. ADCmin was assigned as the
median of the minimum ADC values measured in the tumor ROI
at t1 and t2 for all the patients.
Logistic Growth Model
The logistic growth model [33] starts out as an exponential growth

model but then asymptotically approaches the limiting cellular carrying
capacity at later time points:

N tð Þ = θN ðt1Þ
N ðt1Þ + ðθ − N ðt1ÞÞe−kt ; ð6Þ

where N (t) is the number of tumor cells at time t, N (t1) is the initial
number of tumor cells, and k is the proliferation rate.
Estimation of Proliferation Rate
We used N estimated(t) and N estimated_ETK(t) at t1 and t2 in conjunc-

tion with the logistic model to calculate the proliferation rates (in units
of l/day) k and kETK, respectively. Note that the proliferation rate can
either have a positive value to indicate tumor cell proliferation or a neg-
ative value to indicate tumor cell death.
Predicting Cellularity
We used the logistic model of tumor growth to predict the num-

ber of tumor cells at the end of NAC for the nine NR patients in which
we were able to obtain DW- and DCE-MRI at all three time points.
We used the estimated number of tumor cells at t2 and the prolifera-
tion rate in conjunction with Equation 6 to simulate the number of
tumor cells at t3. As the treatment was given in cycles, the logistic model
was run in a pulsed fashion. The model was switched “on” for the
day of treatment and switched “off” for nontreatment days [31]. At
every iteration of the model, which corresponds to a cycle of chemo-
therapy, a new number of cells for the end of that particular cycle was
calculated and used as the initial number of cells for the next cycle
[25]. We assumed that the tumor cells proliferated according to the
calculated proliferation rate only on the treatment days. We repeated
this iteration of the model until the number of cells at the end of all
cycles of treatment was calculated. This calculation was performed for
each of the two different sets of tumor cell numbers (N estimated(t)
and N estimated_ETK(t)) and proliferation rates (k and kETK) to yield
N simulated(t3) and N simulated_ETK(t3), respectively.
Statistical Analysis
Three statistical analyses were performed. First, the proliferation

rate was used to separate pCR and NR patients using a Wilcoxon



Figure 3. The median k and kETK for NR and responding patients.
(The 95% confidence intervals are shown as error bars.) No DCE cor-
responds to calculations that employed only the ADC data (i.e., the
top relation in Equation 5 was used), while the ETK corresponds to
calculations in which the ADC, ve, and vp data from the ETK model
were used (i.e., the bottom relation in Equation 5). The asterisk
denotes a significant (P < .05) difference between patient groups.
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test. Second, we calculated the sensitivity, specificity, positive pre-
dictive value (PPV), negative predictive value, (NPV) and area under
the receiver operating characteristic (ROC) curve of k and kETK.
To do the calculation, we chose a range of cutoff points; patients
with values less than or equal to the cutoff point were classified as
achieving pCR, while patients with values greater than the cutoff
point were classified as NR patients. The optimal cutoff point was
selected on the basis of yielding the largest sum of the sensitivity
and specificity values. Lastly, the estimated and the simulated number
of tumor cells at t3 were compared to each other using the Pearson and
concordance correlation coefficients.
Results
Figures 1 and 2 display representative maps of the parameters used
for the modeling overlain on sagittal, T1-weighted anatomic scans of
patients achieving pCR and NR, respectively. Figures 1, panels A to
D, and 2, panels A to D, correspond to the ve, vp, ADC, and N (t)
(computed using the bottom relation in Equation 5) maps, respectively.
For the patient achieving pCR in Figure 1, the median ve for the whole
tumor increased from 0.31 to 0.44 from t1 to t2, the median vp
decreased from 0.043 to 0.030, the median ADC increased from
1.40 × 10−3 mm2/s to 1.74 × 10−3 mm2/s, and the median number
of tumor cells decreased from 5.47 × 105 to 3.55 × 105. (Note, as this
patient achieved pCR, there was no tumor present at t3, and thus,
there were no parameters calculated for the tumor at that time point.)
For the patient achieving NR in Figure 2, the median ve for the whole
tumor remained the same at 0.17 at t1 and t2 and increased to 0.28
in t3. The median vp increased from 0.015 to 0.062 from t1 to t2
and increased to 0.087 at t3, while the median ADC decreased from
1.49 ×10−3 mm2/s to 1.32 × 10−3 mm2/s from t1 to t2 and increased
to 1.44 × 10−3 mm2/s at t3. These data were used to find that the
median number of tumor cells increased from 6.49 × 105 to 6.86 ×
105 from t1 to t2 and then decreased to 5.26 × 105 in t3.

The proliferation rate calculated using the number of tumor cells
from pretreatment to after one cycle of chemotherapy was used to
separate patients achieving pCR or NR. Figure 3 shows the median
k and kETK for pCR and NR patients. The 95% confidence intervals
are shown as error bars. The median k and kETK (−0.0103 and
−0.0189, respectively) are negative for patients achieving pCR and very
close to zero (−0.0001 and −0.0004, respectively) for NR patients.
There was a statistically significant difference (P = .021) between the
two groups when kETK was used; however, there was no statistically
significant difference (P = .22) when k was used.

The sensitivity was high (88.2%), PPV and NPV were moderately
high (71.4%), and the specificity was low (45.5%) when k was used
to classify NR patients. When the ve and vp data were incorporated
into the model and used for the calculation of kETK and the classifica-
tion of NR patients, the sensitivity was decreased modestly (82.4%),
but the specificity, PPV, and NPV were all substantially higher
(72.7%, 82.4%, and 72.7%). The area under the ROC curve also
increased from 0.63 to 0.76 when kETK was used to classify NR
patients. These data are summarized in Table 2.

Table 3 shows the correlation coefficients between the estimated
and simulated number of tumor cells at t3. There was a strong and
significant Pearson correlation coefficient (r = 0.92, P = .0004) as well
as a strong concordance correlation coefficient (0.74) between the esti-
mated and the simulated number of tumor cells as calculated without
the use of the ve and vp data. When the ve and vp data were used
to refine the estimates of N (t), the Pearson correlation coefficient
remained strong, though reduced (r = 0.81, P = .0043), while the con-
cordance correlation coefficient increased to 0.81.

Figure 4, A and B, displays the plots of the estimated and the simu-
lated number of tumor cells at t3 with the 95% confidence interval
shown as dotted lines. Figure 4A was calculated without the ve or vp
data, while Figure 4B incorporates both ve and vp data using the
ETK model. Note that the incorporation of the ve and vp data into
the calculation ofN (t) results in better agreement with the line of unity.
Discussion
We have presented a methodology for incorporating early DW- and
DCE-MRI data into a simple mathematical model of tumor growth
to predict the tumor cellularity and treatment response at the conclu-
sion of NAC. We used DW- and DCE-MRI data obtained before and
after one cycle of NAC to estimate both the number of tumor cells and
their associated proliferation rate. These data were then used to predict
the number of tumor cells at the conclusion of NAC. Because the data
used to drive the model are obtained noninvasively, the model’s predic-
tion could be directly compared to the number of tumor cells estimated
from imaging obtained at the conclusion of therapy. We also used the
proliferation rate to separate patients who will respond to treatment
from those who will not.

The number of tumor cells before treatment and after one cycle
of treatment was calculated for each patient. In general, patients
Table 2. Diagnostic Performance of Detecting pCR and NR Patients.
k
 kETK
Sensitivity
 88.2%
 82.4%

Specificity
 45.5%
 72.7%

PPV
 71.4%
 82.4%

NPV
 71.4%
 72.7%

Area under the ROC curve
 0.63
 0.76
Table 3. Correlation between the Number of Tumor Cells at the End of Therapy.
No DCE
 ETK
Pearson
 0.92 (P = .0004)
 0.81 (P = .0043)

Concordance
 0.74
 0.81



Figure 4. Panels A and B are the experimentally estimated number of tumor cells (×105) plotted versus the simulated number of tumor
cells (×105) at the conclusion of therapy. The 95% confidence intervals are displayed as dotted lines. Panel A was calculated without the
addition of DCE data (i.e., the top relation in Equation 5), and panel B has DCE data incorporated using the ETK model (i.e., the bottom
relation in Equation 5).
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achieving pCR had a decrease in the number of tumor cells after one
cycle of NAC, while NR patients had an increase or a very minimal
decrease in the number of tumor cells after one cycle of NAC. This
was shown by the negative median proliferation rate for pCR after one
cycle of NAC. Conversely, a very minimally (i.e., very close to zero)
median negative proliferation rate was found for NR patients.

The proliferation rate was able to separate patients that are pCR
from NR and was also able to identify NR patients with a moderate
to high sensitivity, specificity, and PPV. In addition, the specificity
and PPV were highest when the volume fractions obtained from the
DCE-MRI data were included in the model.

We observed a strong and significant Pearson correlation and a
strong concordance correlation between the estimated and the simu-
lated number of tumor cells at the conclusion of NAC. The strong
concordance correlation observed indicates that there is a strong agree-
ment along the line of unity between the simulated and the estimated
number of tumor cells. Although the Pearson correlation decreased
slightly, the concordance correlation increased as the imaging data on
tumor volume fractions (i.e., ve and vp from the ETK model) was
included. While this may seem counterintuitive, recall that the Pearson
correlation coefficient is a measure of precision, while the concordance
correlation coefficient is a measure of accuracy. Thus, it is quite plau-
sible that incorporating ve and vp into the estimation of tumor cell
number can increase the accuracy at the cost of precision.

It is important to note that the 1) ability to separate patient groups,
2) prediction of the tumor cell number at the conclusion of therapy,
and 3) the concordance correlations between the simulated and the
experimental number of tumor cells all improved when ve and vp data
were all incorporated into the model. This provides some intriguing
evidence that integrating quantitative information about tumor prop-
erties may provide more robust and accurate information about tumor
response and, consequently, increase our predictive ability.

There are a number of important theoretical and experimental lim-
itations in the present effort. One obviously incorrect assumption is
that we assumed that all cells within a voxel are tumor cells, thereby
ignoring the normal epithelium, stroma, and scattered inflammatory
cells in that voxel. This assumption may lead to an overestimation of
the number of tumor cells in the voxel; a method that can be used to
separate the tumor cells from the other cell types that may be present
will reduce this limitation. We also assumed that the change in ADC
from the first two time points was entirely due to the reduction in
cellularity and that this proliferation rate remains constant throughout
the course of treatment. These simplifying assumptions about the
proliferation rate may lead to an incorrect prediction of the number
of tumor cells at the conclusion of NAC. Another limitation of the
model is that it does not explicitly account for therapies that are initially
cytostatic (e.g., targeted therapies aimed at disrupting particular path-
ways in particular tumor subtypes) and is more well suited to therapies
that are cytotoxic. Thus, the approach outlined in this manuscript will
tend to underestimate the efficacy of cytostatic treatments.

Concerning experimental limitations, we assumed that the regions
of tissue showing enhancement in the DCE-MRI data are the only
tissue voxels that contain viable tumor cells. This can lead to errors
in the calculation of both the number and spatial distribution of tumor
cells and, therefore, the calculated proliferation rate. Another limita-
tion is the use of the same model for a heterogeneous patient pop-
ulation receiving different treatment regimens. This heterogeneous
population was selected due to practical limitations encountered
during most clinical trials, that is, we do not currently have enough
patients within any one particular subgroup to perform meaningful
statistics on a homogeneous subpopulation. As our patient database
increases, we will try to focus on patients with a particular tumor
subtype with a more homogenous treatment approach that, we hy-
pothesize, will yield more convincing results. However, the fact that
the correlations are still quite strong speaks to the potential power of
the approach.

The prediction of cellularity and the separation of the responding
and non-responding patients can be further improved by improving
the DW-MRI acquisition. This can be accomplished by using a higher
minimum b value because the minimum b values of 0 to 50 s/mm2

employed in this study are particularly sensitive to perfusion and can
possibly lead to the overestimation of ADC that will, in turn, lead to
an underestimation of the tumor cell number and an error in the cal-
culation of the proliferation rate. In addition, the use of more than
two b values can potentially improve the ADC estimation as there would
bemore points to fit to Equation 1, thereby increasing the accuracy of the
predictive model. We used only two b values because the data used for
this study are part of a larger study that includes the acquisition of many
MR data types within a limited 30-minute scan session. Additionally,
the low resolution of the DW-MRI data can smooth out the estimation
of cell number due to the partial volume effect and this can lead to the
incorrect estimation of the proliferation rate.
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Another possible source of experimental error is related to the tem-
poral resolution (16 seconds) for the DCE-MRI data, which is not
optimal for pharmacokinetic analysis; rather, it represents a compro-
mise between the need to image the entire affected breast (requiring
a large field of view and reasonable spatial resolution) and the need
to image quickly to characterize kinetics. Unfortunately, in extreme
cases, this temporal resolution can lead to errors in the estimation of
ve and vp [34] and, subsequently, incorrect estimation of the number
of tumor cells and the proliferation rate. However, it is important to
note that some investigators have used temporal resolutions that are
not very different from the one employed in this study [19,35,36].
Thus, while the temporal resolution we used is not optimal for kinetic
modeling, it represents a (common) practical implementation that
might be available from a clinical trial.
In addition to addressing the experimental and theoretical limita-

tions described above, ongoing work is focused on expanding the
model to account for tumor-associated vascularity (from DCE-MRI
data) and glucose metabolism (from fluorodeoxyglucose positron emis-
sion tomography data). We hypothesize that incorporating such data,
which would provide a complete description of tumor characteristics,
will improve the overall predictive ability of the approach.
Conclusion
ADC, ve, and vp data obtained before treatment and after one cycle
of chemotherapy can be used to estimate the number of tumor cells
and, if validated in a larger patient set, can potentially be used to pre-
dict treatment response at the end of chemotherapy. This has the ben-
efit of determining the efficacy of chemotherapy regimen as early as
after a single cycle. Knowledge that a particular chemotherapy regimen
will ultimately not yield clinical benefit after just one cycle of therapy
could prevent a patient from receiving months of toxic and ineffective
treatment. To the best of our knowledge, this is the first example of
a mathematical model of tumor growth populated by imaging data to
predict patient outcome early in the course of NAC.
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